Сообщение на тему электронные носители информации кратко. Обзор современных электронных носителей информации

Носители информации – материал, который предназначен для записи, хранения и последующего воспроизведения информации.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Носитель информации – это физическая среда, в которой она фиксируется.

В роли носителя могут выступать бумага, фотопленка, клетки мозга, перфокарты, перфоленты, магнитные ленты и диски или ячейки памяти компьютера. Современная техника предлагает все новые и новые разновидности носителей информации. Для кодирования информации в них используются электрические, магнитные и оптические свойства материалов. Разрабатываются носители, в которых информация фиксируется даже на уровне отдельных молекул.

В современном обществе можно выделить три основных вида носителей информации:

1) Перфорационные – имеют бумажную основу, информация заносится в виде пробивок в соответствующей строке и столбце. Объем информации – 800 бит или 100 КБ;

2) Магнитные – в качестве них используются гибкие магнитные диски и кассетные магнитные ленты;

3) оптический.

К носителям информации относят:

Магнитные диски;

- магнитные барабаны - ранняя разновидность компьютерной памяти, широко использовавшаяся в 1950-1960. Изобретена Густавом Таушеком в 1932 в Австрии. В дальнейшем магнитный барабан был вытеснен памятью на магнитных сердечниках.

- дискеты - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Запись и считывание осуществляется с помощью специального устройства - дисковода;

- магнитные ленты - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя;

- оптические диски - носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио, однако в настоящее время широко используется как устройство хранения данных широкого назначения;

- flash память - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка.

Все носители можно разделить на:

1. Человекочитаемые (документы).

2. Машиночитаемые (машинные) – для промежуточного хранения информации (диски).

3. Человекомашиночитаемые – комбинированные носители узкоспециального назначения (бланки с магнитными полосками).

Однако быстрое развитие средств вычислительной техники стерло грань между 1ой и 3ей группой – появился сканер, который позволяет вводить информацию с документов в память ЭВМ.

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

1. по виду записи:

– магнитные накопители (жесткий диск, гибкий диск, сменный диск);

– магнитно-оптические системы, называемые также МО;

– оптические, такие, как CD (Compact Disk, Read Only Memory) или DVD (Digital Versatile Disk);

2. по способам построения:

– вращающаяся пластина или диск (как у жесткого диска, гибкого диска, сменного диска, CD, DVD или MО);

– ленточные носители различных форматов;

– накопители без подвижных частей (например, Flash Card, RAM (Random Access Memory), имеющие ограниченную область применения из-за относительно небольших объемов памяти по сравнению с вышеназванными).

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

1. распространение информации : носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;

2. архивирование : носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);

3. резервирование (Backup) или передача данных : носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.

Посмотрело: 13446

0

Накопление знаний - основа основ любой цивилизации. Но человеческая память несовершенна и неспособна вместить все знания и опыт, которые переходят из поколения в поколение. Поэтому с древнейших времен люди использовали самые разнообразные носители информации, от камня и шкур животных до высококачественной бумаги. При этом, несмотря на совершенствование типов носителей, сам принцип записи и структура данных за несколько тысячелетий практически не изменились.

Качественный скачок произошел только тогда, когда человеку потребовалось научить машину понимать записанную информацию.

Более двухсот лет назад, в 1808 году, французский изобретатель Жозеф Мари Жаккар создал станок для производства тканей со сложным узором. Уникальность этого устройства заключалась в том, что была фактически спроектирована и построена первая программно управляемая машина. Последовательность действий станка при создании какого-либо узора записывалась на специальных картонных перфокартах в виде пробитых в определенном порядке дырочек.

Вряд ли Жаккар представлял, насколько блестящее будущее уготовано его изобретению. Не станку, а принципу записи информации в виде двоичного кода, который стал основой азбуки всех компьютеров.

Позже идеи Жаккара использовались в автоматических телеграфах, где последовательность сигналов азбуки Морзе записывалась на перфолентах, в аналитической машине Чарльза Беббиджа, ставшей прообразом современных компьютеров, в статистическом табуляторе Германа Холлерита и, конечно, в первых ЭВМ двадцатого века. Благодаря своей простоте различные варианты перфокарт и перфолент получили широчайшее распространение в компьютерной технике и программно управляемых станках. Подобные носители информации использовались вплоть до середины 80-х, когда их окончательно вытеснили магнитные носители.

Перфокарты и перфоленты

Годы жизни: 1808–1988

Объем памяти: до 100 Кб

Простота изготовления, возможность использования в самых низкотехнологичных устройствах

– Малая плотность записи, низкая скорость чтения/записи, невысокая надежность, невозможность перезаписи информации



ПРИРОДНЫЙ МАГНЕТИЗМ

Перфокарты и перфоленты, при всех своих преимуществах и богатой истории, обладали двумя фатальными недостатками. Первый - очень низкая информационная емкость. На стандартной перфокарте помещалось всего 80 символов или около 100 байт, для хранения одного мегабайта информации понадобилось бы больше десяти тысяч перфокарт. Второй - низкая скорость считывания: устройство ввода могло проглатывать максимум 1000 перфокарт в минуту, то есть всего 1,6 килобайта в секунду. Третий - невозможность перезаписи. Одна лишня дырка - и носитель информации приходит в негодность, как и вся находящаяся на нем информация.

В середине XX века был предложен новый принцип хранения информации, основанный на явлении остаточного намагничивания некоторых материалов. Вкратце принцип действия следующий: поверхность носителя изготавливается из ферромагнетика, после воздействия на который магнитным полем на материале сохраняется остаточная намагниченность вещества. Ее-то впоследствии и регистрируют считывающие устройства.

Первыми ласточками данной технологии стали магнитные карты, по размерам и функциям совпадавшие с обычными перфокартами. Впрочем, широкого распространения они не получили и были вскоре вытеснены более вместительными и надежными накопителями на магнитных лентах.

Эти запоминающие устройства активно использовались в мейнфреймах с 50-х годов. Изначально они представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации. Несмотря на более чем солидный возраст, технология не умерла и используется по сей день в виде стримеров. Это запоминающие устройства, выполненные в виде компактного картриджа с магнитной лентой, предназначенные для резервного копирования информации. Залог их успеха - большая вместимость, до 4 Тб! Но для любых других задач они практически непригодны из-за крайне низкой скорости доступа к данным. Причина в том, что вся информация записывается на магнитную ленту, следовательно, чтобы получить доступ к какому-либо файлу, необходимо перемотать пленку до нужного участка.

Принципиально иной подход к записи данных используется в дискетах. Это портативное запоминающее устройство, представляющий собой диск, покрытый ферромагнитным слоем и заключенный в пластиковый картридж. Дискеты появились как ответ на потребность пользователей в карманных носителях информации. Впрочем, слово «карманный» для ранних образцов не совсем подходит. Существует несколько форматов дискет в зависимости от диаметра магнитного диска внутри. Первые дискеты, появившиеся в 1971 году, были 8-дюймовыми, то есть с диаметром диска в 203 мм. Так что положить их можно было разве что в папку для бумаг. Объем записываемой информации составлял целых 80 килобайт. Впрочем, уже через два года этот показатель увеличился до 256 килобайт, а к 1975-му - до 1000 Кб! Пришло время сменить формат, и в 1976 году появились 5-тидюймовые (133 мм) дискеты. Их объем изначально составлял всего 110 Кб. Но технологии совершенствовались, и уже в 1984 году появились дискеты «высокой плотности записи» объемом 1,2 Мб. Это была «лебединая песня» формата. В том же 1984 году появились 3,5-дюймовые дискеты, которые уже можно по праву назвать карманными. По легенде, размер в 3,5 дюйма (88 мм) был выбран по принципу помещаемости дискеты в нагрудный карман рубашки. Объем этого носителя изначально составлял 720 Кб, но быстро подрос до классического 1,44 Мб. Позже, в 1991 году, появились 3,5-дюймовые дискеты Extended Density расширенной плотности, вмещавшие 2,88 Мб. Но они широкого распространения не получили, т. к. для работы с ними требовался специальный привод.

Дальнейшим развитием данной технологии стал знаменитый (кое-где печально знаменитый) Zip. В 1994 году компания Iomega выпустила на рынок накопитель рекордной по тем временам емкости - 100 Мб. Принцип действия Iomega Zip тот же, что и у обычных дискет, но благодаря высокой плотности записи производителю удалось добиться и рекордной емкости запоминающего устройства. Впрочем, Zip’ы оказались довольно ненадежными и дорогими, поэтому не смогли занять нишу трехдюймовых дискет, а впоследствии и вовсе были вытеснены более совершенными запоминающими устройствами.

Дискеты

Годы жизни: 1971- по сей день

Объем памяти: до 2,88 Мб

Компактный размер, низкая стоимость

– Небольшая надежность, уязвимый корпус, невысокая плотность записи

Магнитная лента

Годы жизни: 1952 - по сей день

Объем памяти: до 4 Тб

Возможность перезаписи, широкий диапазон рабочих температур (от -30 до +80 градусов), низкая стоимость носителей

– Невысокая плотность записи, невозможность мгновенного доступа к нужной ячейке памяти, невысокая надежность


Накопители на магнитных лентах представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации.

ЖЕСТКИЕ ПРАВИЛА

Жесткий диск, Hard Disk Drive, является основным запоминающим устройством практически во всех современных компьютерах.

В целом принцип действия как существующих, так и разрабатываемых жестких дисков основан на явлении остаточного намагничивания материалов. Но здесь есть свои нюансы. Непосредственным носителем информации в жестком диске является блок из одной или нескольких круглых пластин, покрытых ферромагнетиком. Считывающая головка, двигаясь над поверхностью вращающихся с высокой скоростью дисков, производит запись информации путем намагничивания миллиардов крошечных областей (доменов) или считывание данных за счет регистрации остаточного магнитного поля.

Наименьшей ячейкой информации в данном случае является один домен, который может быть либо логическим нулем, либо единицей. Таким образом, чем меньше размеры одного домена, тем больше данных можно впихнуть на один жесткий диск.

Первый HDD появился в 1956 году. Устройство состояло из 50 дисков диаметром 600 мм каждый, вращавшихся со скоростью 1200 об/мин. Размеры этого HDD были сравнимы с современным двухкамерным холодильником, а емкость составляла целых 5 Мб.

С тех пор плотность записи на жестких дисках увеличилась более чем в 60 млн раз. На протяжении последнего десятилетия компании-производители стабильно удваивали емкость дисков каждый год, но сейчас этот процесс приостановился: достигнута максимально возможная плотность записи для ныне использующихся материалов и, главное, технологий.

Наиболее распространена сейчас так называемая параллельная запись. Смысл ее в том, что ферромагнетик, на который осуществляется перенос данных, состоит из множества атомов. Некоторое количество таких атомов вместе составляет домен - минимальную ячейку информации. Уменьшение размеров домена возможно только до определенного предела, так как атомы ферромагнетика взаимодействуют друг с другом и в месте стыка логического нуля и единицы (областей с противоположно направленными магнитными моментами) могут потерять стабильность. Поэтому требуется определенная буферная зона, обеспечивающая надежность хранения информации.


При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. При перпендикулярной записи магнитные частицы располагаются перпендикулярно поверхности диска.

При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. С точки зрения технологии это самое простое решение. В то же время при такой записи сила взаимодействия между доменами наиболее высока, поэтому нужна большая буферная зона, и, следовательно, больший размер самих доменов. Так что максимальная плотность при параллельной записи составляет около 23 Гбит/см2, и эта высота уже практически взята.

Дальнейшее увеличение емкости жестких дисков возможно за счет увеличения количества рабочих пластин в устройстве, но этот способ является тупиковым. Размеры современных HDD стандартизованы, да и количество используемых в них дисков ограничено по конструктивным требованиям.

Есть и другой путь - использование нового типа записи. С 2005 года в продаже можно найти жесткие диски, использующие метод перпендикулярной записи. При такой записи магнитные частицы располагаются перпендикулярно поверхности диска. Благодаря этому домены слабо взаимодействуют друг с другом, так как их векторы намагниченности располагаются в параллельных плоскостях. Это позволяет серьезно увеличить плотность информации - практический потолок оценивается в 60-75 Гбит/см2, т. е. в 3 раза больше, чем для параллельной записи.

Но самой перспективной считается технология HAMR. Это так называемый метод тепловой магнитной записи. По сути HAMR - дальнейшее развитие технологии перпендикулярной записи, с той лишь разницей, что в момент записи нужный домен подвергается кратковременному (около пикосекунды) точечному нагреву лазерным лучом. Благодаря этому головка может намагничивать очень мелкие участки диска. В открытой продаже HAMR-HDD пока нет, но опытные образцы демонстрируют рекордную плотность записи - 150 Гбит/см2. В дальнейшем, по мнению представителей компании Seagate Technology, плотность удастся увеличить до 7,75 Тбит/см2, что почти в 350 раз выше предельной плотности для параллельной записи.

HDD c параллельной записью

Годы жизни: 1956 - по сей день

Объем памяти: до 2 Тб на данный момент

Возможность мгновенного перехода к нужной ячейке информации, хорошее сочетание цена/качество

– Недостаточная на сегодняшний день плотность записи, морально устаревшая технология

HDD c перпендикулярной записью

Годы жизни: 2005 - недалекое будущее

Объем памяти: до 2,5 Тб на данный момент

Высокая плотность записи

– Более сложная технология изготовления, высокая цена, невысокая надежность новых емких моделей

HAMR-HDD

Годы жизни: 2010 - недалекое будущее

Объем памяти: время покажет

Еще более высокая плотность записи

– Особенно сложная технология изготовления и соответствующая ей высокая цена

ОПТИКА НА МАРШЕ

Несмотря на постоянное увеличение емкости стационарных жестких дисков, существует потребность в компактном и мобильном носителе информации. На сегодняшний день в этой области лидируют CD и DVD. Фактически любую информацию - музыку, софт, фильмы, энциклопедии или клипарты - можно купить на этих носителях.

Первый представитель этой технологии - LD (Laser Disc), разработанный еще в 1969 году. Эти диски предназначались прежде всего для домашних кинотеатров, но, несмотря на ряд преимуществ перед видеокассетами VHS и Betamax, широкого распространения они не получили. Следующий представитель оптических носителей оказался куда более удачным. Это был всем известный компакт-диск (CD, Compact Disc). Он был разработан в 1979 году и первоначально предназначался для записи высококачественной музыки. Но в 1987 году стараниями Microsoft и Apple компакт-диски стали использоваться и в персональных компьютерах. Так пользователи получили в свое распоряжение компактный и надежный носитель информации высокой емкости: стандартный объем в 650 Мб для конца 80-х казался неисчерпаемым.

За последние 20 лет CD практически не изменился. Носитель представляет собой своеобразный «бутерброд», состоящий из трех слоев. Основа компакт-диска - поликарбонатная подложка, на которую распыляется тончайший слой металла (алюминий, серебро, золото). На этот слой, собственно, и производится запись. Металлическое напыление покрывается слоем защитного лака, и уже на него наносятся всякие картинки, логотипы, названия и другие опознавательные знаки.

Принцип работы оптических дисков основан на изменении интенсивности отраженного света. На обычном CD вся информация записана на одной спиральной дорожке, представляющей собой последовательность углублений, питов (от англ. pit - «впадина»). Между углублениями расположены участки с гладким отражающим слоем, лэндов (от англ. land - «земля, поверхность»). Данные считываются при помощи лазерного луча, сфокусированного в световое пятно диаметром около 1,2 мкм. Если лазер попадает на лэнд, специальный фотодиод регистрирует отраженный луч и фиксирует логическую единицу. Если же лазер попадает в пит, луч рассеивается, интенсивность отраженного света уменьшается и устройство фиксирует логический ноль.

Первые лазерные диски были предназначены только для чтения. Они изготавливались строго в заводских условиях и питы на них наносились при помощи штамповки непосредственно на голую поликарбонатную подложку, после чего диски покрывали отражающим слоем и защитным лаком.

Но уже в 1988-м появилась технология CD-R (Compact Disc-Recordable). Диски, выполненные по этой технологии, можно было использовать для однократной записи информации при помощи специального пишущего привода. Для этого между поликарбонатом и отражающим слоем был размещен еще один слой из тонкого органического красителя. При нагревании до определенной температуры краситель разрушался и темнел. В процессе записи привод, управляя мощностью лазера, наносил на диск последовательность темных точек, которые при считывании воспринимались как питы.

Еще через десять лет, в 1997 году, был создан CD-RW (Compact Disc-Rewritable) - перезаписываемый компакт-диск. В отличие от CD-R, здесь в качестве записывающего слоя использовался специальный сплав, способный под воздействием лазерного луча переходить из кристаллического состояния в аморфное и обратно.

LD

Годы жизни: 1972–2000

Объем памяти: 680 Мб

Первый коммерческий образец оптических носителей данных

– Использовался только в качестве носителя видео и аудио и по размерам не уступал виниловым дискам, что создавало определенные неудобства

CD

Годы жизни: 1982 - по сей день

Объем памяти: 700 Мб

Компактность, относительная надежность, дешевизна

– Низкая, по современным меркам, емкость, морально устаревшая технология

БОЛВАНКИ НОВОГО ПОКОЛЕНИЯ

В середине 90-х, когда эпоха CD была в самом разгаре, прозорливые производители уже работали над усовершенствованием оптических дисков. В 1996 году в продаже появились первые DVD (Digital Versatile Disc) емкостью 4,7 Гб. Новые носители информации эксплуатировали тот же самый принцип, что и CD, только для считывания использовался лазер с меньшей длиной волны - 650 нм против 780 нм у компакт-дисков. Это, казалось бы, нехитрое изменение позволило уменьшить размер светового пятна, а, следовательно, и минимальный размер ячейки информации. Поэтому DVD-диск смог вместить в 6,5 раз больше полезной информации, чем CD.

В 1997 году в продажу поступили и первые записываемые DVD-R, тоже эксплуатирующие технологию, проверенную на CD-R. Впрочем, до широких масс эти новшества дошли только через несколько лет, поскольку первый пишущий привод для DVD-R стоил порядка $17 000, а болванки - по $50 за штуку.

Сегодня DVD стал неотъемлемой частью компьютерной индустрии. Но и ему жить осталось недолго. Стремительный прогресс в области высоких технологий и растущие потребности пользователей требуют новых, более емких носителей.

Первой ласточкой стали двуслойные DVD. В них информация записывается на двух разных уровнях, обычном нижнем и полупрозрачном верхнем. Изменяя фокусировку лазера, можно считывать данные с обоих слоев поочередно. Такие DVD вмещают 8,5 Гб информации. Затем появились двуслойные двусторонние DVD. У этих дисков обе стороны рабочие и содержат по два слоя информации. Вместимость носителей выросла до 17 Гб.

На этом показателе был достигнут потолок DVD-технологии. Дальнейшее увеличение количества слоев представляется излишне сложной проблемой, толщина диска все же ограничена, так что впихнуть туда что-то очень трудно. Кроме того, даже при двуслойной системе было множество нареканий на качество считывания информации, а уж сколько ошибок могут выдать гипотетические трехслойные DVD - и подумать страшно.

Производители решили (временно, конечно) проблему увеличения емкости путем создания нового формата. Вернее, сразу двух: HD-DVD и Blu-ray. Обе технологии используют синий лазер с длиной волны в 405 нм. Как мы уже сказали, уменьшение длины волны позволяет также уменьшить минимальный размер ячейки памяти и, следовательно, увеличить плотность записи. Появление сразу двух новых типов дисков спровоцировало так называемую «войну форматов», длившуюся около двух лет. В конечном итоге, несмотря на определенные преимущества, HD-DVD этот бой проиграл. По мнению многих экспертов, главную роль в этом сыграла исключительно мощная поддержка американскими киностудиями формата Blu-ray.

«Голубой луч» сейчас является единственным оптическим носителем информации высокой емкости, который можно найти в продаже. Диски 23, 25, 27 и 33 Гб. Существуют и двуслойные образцы объемом 46, 50, 54 и 66 Гб.

DVD

Годы жизни: 1996 - по сей день

Объем памяти: до 17,1 Гб

Самый популярный носитель информации: подавляющее большинство музыки, фильмов и разнообразного софта распространяется именно на DVD

– Морально устаревшая технология

HD-DVD

Годы жизни: 2004–2008

Объем памяти: до 30 Гб

Высокая емкость плюс относительно невысокая цена за счет более дешевого производства

– Отсутствие поддержки американской киноиндустрии.

Blu-ray

Годы жизни: 2006 - по сей день

Объем памяти: до 66 Гб

Высокая емкость носителей, поддержка голливудских «монстров»

– Большая стоимость приводов и носителей, поскольку для производства требуется принципиально новое оборудование

ГОНКА ГИГАБАЙТОВ

Рынок дисковых накопителей - весьма лакомый кусочек. Поэтому уже в ближайшее время следует ожидать если не смещения Blu-ray с лидирующих позиций, то новой войны форматов.


Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Это дает производителям основание утверждать, что уже достигнутый потолок в 3,6 Тб - далеко не предел.

Существует целый ряд технологий, претендующих на кошельки пользователей. Например, HD VMD (High Density - Versatile Multilayer Disc). Этот формат был представлен в 2006 году малоизвестной британской компанией New Medium Enterprises. Тут производитель пошел по пути увеличения количества записываемых слоев в одном диске - их аж 20. Благодаря этому максимальная емкость HD VMD на сегодняшний день составляет 100 Гб. В целом маловероятно чтобы небольшая New Medium Enterprises сумеет всерьез потеснить мультимедиагигантов. Но благодаря заявленной низкой стоимости дисков и приводов к ним (за счет использования более дешевого красного лазера с длиной волны 650 нм) теоретически британцы могут рассчитывать на определенную популярность своей продукции. Если она, конечно, вообще доберется до рынка.

Еще один претендент - формат Ultra Density Optical (UDO). Разработка началась еще в июне 2000 года, и сейчас это уже вполне готовое устройство, доступное на рынке. Здесь была сделана ставка на увеличении точности фокусировки луча. При длине волны лазера в 650 нм диск UDO вмещает от 30 до 60 Гб информации. Существуют также носители, использующие синий лазер (405 нм), и в этом случае максимальный объем UDO достигает 500 Гб. Но за все нужно платить: увеличение точности лазера стало причиной серьезного удорожания приводов. Сами носители выпускаются в виде 5,35-дюймового картриджа с диском внутри (для защиты от внешних воздействий) и продаются по цене в $60-70. На сегодняшний день технология UDO используется в основном крупными компаниями для архивации информации и создания резервных копий данных.

HD VMD (High Density - Versatile Multilayer Disc)


Годы жизни: 2006 - недалекое будущее

Объем памяти: до 100 Гб

Высокая емкость, относительно низкая стоимость

– Отсутствие поддержки крупных игроков рынка, что наверняка станет причиной смерти формата

UDO (Ultra Density Optical)


Годы жизни: 2000 - по сей день

Объем памяти: до 120 Гб

Хорошая емкость

– Высокая стоимость приводов и носителей, ориентация на узкоспециализированный рынок устройств архивации данных

ГОЛОГРАФИЯ ЖЖЕТ

Несмотря на обилие форматов оптических дисков, уже существует технология, которая в будущем наверняка оставит за бортом всех конкурентов. Речь идет о голографической записи. Преимущества этой технологии и ее потенциал огромны. Во-первых, если в обычных оптических дисках информация записывается на слой при помощи отдельных ячеек информации, то в голографической памяти данные распределяются по всему объему носителя, причем за один такт может записываться несколько миллионов ячеек, благодаря чему скорость записи и чтения резко увеличивается. Во-вторых, за счет распределения информации в трех измерениях максимальная емкость носителя достигает действительно заоблачных высот.

Работы в этом направлении начались около десяти лет назад, и на сегодняшний день существует вполне внятная технология, по которой на стандартных размеров диск можно записать 1,6 Тб информации. При этом скорость чтения составляет 120 Мб/с.

Принцип действия голографической записи реализован следующим образом. Лазерный луч при помощи полупрозрачного зеркала разделяется на два потока, имеющих одинаковую длину волны и поляризацию. Пространственный световой модулятор, представляющий собой плоский трафарет, преобразует цифровую информацию в последовательность прозрачных и непрозрачных ячеек, которые соответствуют логическим единице и нулю. Сигнальный луч, пройдя через эту решетку и получив порцию информации, проецируется на носитель. Второй луч - опорный - под углом падает в ту же область диска. При этом в точках, где опорный и сигнальный лучи пересекаются, происходит сложение амплитуд волн (интерференция), в результате чего лучи совместными усилиями прожигают светочувствительный слой, фиксируя информацию на носителе. Таким образом за один такт записывается сразу вся информация, которую может осилить разрешающая способность светового модулятора. На сегодняшний день это порядка миллиона бит за раз.

Считывание данных происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Благодаря этому можно эффективно использовать весь объем носителя. Практический потолок емкости голографических дисков точно неизвестен, но производители утверждают, что уже достигнутый ими потолок в 3,6 Тб - далеко не предел.

Голографические диски


Годы жизни: недалекое будущее

Объем памяти: до 1 Тб

Очень, ну очень высокая емкость при сохранении компактных размеров носителя

– Время покажет

HDD + ЛАЗЕР

В 2006 году Даниэл Стэнсю (Daniel Stanciu), работавший над своей докторской диссертацией, и доктор Фредерик Ханстин открыли способ изменения полярности магнита при помощи светового излучения. Надо сказать, что раньше это считалось невозможным в принципе. Неудивительно, что Даниэл Стэнсю с триумфом защитил докторскую диссертацию, а сама технология, получившая довольно странное название - чистооптическая инверсия намагниченности, - уже нашла потенциальное применение.

Итак, при помощи лазерного луча можно намагничивать домены жестких дисков, т. е. выполнять ту же самую работу, над которой сейчас трудится пишущая головка, но намного быстрее. Скорость записи на обычный жесткий диск не превышает 100–150 Мбит/с. В прототипе «лазерного» жесткого диска этот показатель на сегодняшний день составляет 1 Тбит/с или 1 000 000 Мбит/с. Ученые уверены, что это не предел - они рассчитывают увеличить скорость записи до 100 Тбит/с. Кроме того, при помощи лазера можно существенно увеличить плотность записываемой информации, что, теоретически, делает лазерные жесткие диски одной из наиболее перспективных технологий хранения и записи данных.

Но на сегодняшний день нет никакой информации об устройстве считывающей головки для таких HDD. При помощи лазера можно только записывать информацию. Фиксировать намагниченность доменов он не может. Следовательно, для чтения нужно будет использовать стандартные магнитные головки. Кроме того, не стоит забывать, что и скорость записи, и скорость чтения HDD напрямую зависят от скорости вращения дисков. Так что оптимистические заявления ученых выглядят несколько странно. Для достижения показателя в 1 Тбит/с нужно раскрутить диск до таких скоростей, что он, вероятно, разлетится на куски под действием чудовищной центробежной силы или вовсе сгорит от трения об воздух. Конечно, использование определенной оптической системы перенаправления луча позволяет вовсе отказаться от вращения диска при записи. Но чтение-то производится по-прежнему магнитной головкой, которой жизненно необходимо скользить над поверхностью диска.

Словом, перспективы технологии чистооптической инверсии намагниченности хоть и привлекательны, но весьма туманны.

Лазерный HDD

Годы жизни: недалекое будущее

Объем памяти: время покажет

Высокая плотность и скорость записи информации, в перспективе - возможность уменьшения количества движущихся частей диска

– Слишком много вопросов, на которые никто не дает ответов

БЛЕСТЯЩЕЕ БУДУЩЕЕ?

Диски дисками, но обычному пользователю бывает жизненно необходим компактный, емкий и, главное, простой в использовании накопитель информации. Сегодня для этой цели используют флэшки, или, говоря по-научному, USB Flash Drive. Флэш-память этого устройства представляет собой массив транзисторов (ячеек), каждый из которых может хранить один бит информации.

У подобного носителя есть масса преимуществ. Флэшки, в отличие от своих предшественников, не имеют движущихся деталей. Они компактны, надежны и способны хранить довольно солидные объемы информации, да и производители неустанно трудятся над увеличением их емкости. Существуют флэш-накопители, вмещающие 8, 12 и даже 64 Гб данных. Правда, подобные игрушки по стоимости конкурируют с первоклассным компьютером в комплектации «все включено», но это временное явление. Еще недавно за флэшку емкостью 1 Гб просили целое состояние, а сейчас она доступна каждому студенту, получающему стипендию.

Еще одно преимущество флэш-накопителя - простота в использовании. Флэшка подсоединяется к USB-порту компьютера, операционная система обнаруживает новое устройство, а содержимое флэшки отображается в виде дополнительного диска в системе. Соответственно и работа с файлами не отличается от работы с обычным жестким диском. Не требуется никаких дополнительных программ, не нужно ломать голову над совместимостью устройств и форматов, всматриваться в производителя устройства, гадая, подойдет ли оно к компьютеру или нет.

Флэш-память надежна, не боится вибраций, не шумит, потребляет мало энергии, скорость обмена информацией приближается к показателям стандартных жестких дисков. Флэш-память, за счет отсутствия движущихся частей, обладает высокой надежностью, не боится вибраций, не шумит и потребляет мало энергии. Преимущества очевидны.


Считывание данных при голографическом методе происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Сегодня уже выпускаются портативные компьютеры, в которых вместо привычных HDD установлены чипы SSD (Solid State Drive), так называемые твердотельные накопители на основе флэш-памяти. Принципиально от обычных флэшек такие запоминающие устройства ничем не отличаются. Ноутбуки с SSD, благодаря низкому энергопотреблению, способны работать почти в два раза дольше, чем оборудованные обычными жесткими дисками. Однако у флэш-памяти есть и свои серьезные недостатки. Во-первых, скорость обмена данными в SSD пока еще существенно отстает от показателей жестких дисков. Но эта проблема будет решена в самом ближайшем будущем. Второй недостаток значительно серьезней. Флэш-память в силу конструкции выдерживает ограниченное число циклов стирания и записи - порядка 100 000 циклов. Не вдаваясь в технические подробности, можно поставить диагноз: процесс записи и стирания данных ведет к физическому износу ячеек памяти на электронном уровне. Впрочем, взяв в руки калькулятор и проделав простейшие вычисления, пользователь светлеет лицом и радостно заявляет, что даже если каждый день десять раз в день полностью перезаполнять флэшку, 100 000 циклов хватит на 27 лет! Но на практике флэш-память (например, карта памяти в фотоаппарате), интенсивно используемая каждый день, может выйти из строя уже через два-три года эксплуатации.

Flash-память

Годы жизни: 1989 - по сей день

Объем памяти: до 80 Гб

Простота в использовании, низкое энергопотребление, надежность

– Ограниченное число циклов записи/стирания

Сегодня прогресс в области компьютерных технологий вообще и запоминающих устройств в частности стремительно меняет мир.

В будущее заглядывать - дело неблагодарное, но можно с уверенностью утверждать: если производители не смогут победить единственный серьезный недостаток флэш-памяти, не сумеют достичь необходимого пользователям объема HDD или создать простой и надежный голографический диск, они неизбежно придумают другой способ хранения информации.

Дешевый, надежный, компактный, быстрый.

Введение…………………………………………………………………………...3

Носители информации……………………………………………………………4

Кодирование и считывание информации..………………………………………9

Перспективы развития…………………….…………………………………….15

Заключение……………………………………………………………………….18

Литература.………………………………………………………………………19

Введение

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Кодирование информации – это процесс формирования определенного представления информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией.

В ходе реферата рассмотрим основные типы носителей информации, кодирования и считывания информации, а также перспективы развития.

Носители информации

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

Рассмотрим более подробно современные носители информации.

1. Накопитель на гибких магнитных дисках (НГМД – дисковод).

Это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод – устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее време дискеты практически не используются.

2. Накопитель на жестком магнитном диске (НЖМД – винчестер)

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

– большая емкость;

– простота и надежность использования;

– возможность обращаться к множеству файлов одновременно;

– высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

3. Устройство чтения компакт-дисков (CD-ROM)

В этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно, и большой емкости при минимальных размерах. Компакт-диск является отличным средством хранения информации, он дешевый, практически не подвержен каким-либо влияниям среды, информация, записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, его ёмкость 650 Мбайт. Имеет только один недостаток – сравнительно небольшой объём хранения информации.

4. DVD

А) Отличия DVD от обычных CD-ROM

Самое основное отличие – это, естественно, объем записываемой информации. Если на обычный CD-диск можно записать 650 Мб (хотя в последнее время встречаются болванки и на 800 Мб, но далеко не все приводы смогут прочитать то, что записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб. В DVD используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. В самих носителях тоже отличий больше, чем кажется на первый взгляд. Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою – для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой. Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.

Б) Емкость DVD

Существует пять разновидностей DVD-дисков:

1. DVD5 – однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 – двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 – однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 – двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 – двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Самые популярные стандарты – DVD5 и DVD9.

В) Возможности

Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта, и игры, и фильмы. Естественно, что основной областью использования является кинопродукция.

Г) Звук в DVD

Звуковое сопровождение может быть закодировано во многих форматах. Самые известные и часто используемые – Dolby Prologic, DTS и Dolby Digital всех версий. То есть фактически в форматах, используемых в кинотеатрах для получения максимально точной и красочной звуковой картины.

Д) Механические повреждения

К механическим повреждениям диски CD и DVD одинаково чувствительны. То есть царапина есть царапина. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными. Сейчас существуют программы, которые могут восстанавливать информацию даже с поврежденных дисков, правда с пропуском повреждённых секторов.

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии.

6. USB Flash Drive

Новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB(универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Кодирование и считывание информации

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

А) Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Необходимо помнить, что в настоящее

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 б В - - Т

время для кодировки русских букв используют пять различных кодовых

таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы, не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы. Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы – конверторы, которые встроены в приложения.

Б) Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. Без компьютерной графики трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах – в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

В) Кодирование звуковой информации

С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся. Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток – старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи. В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука. На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. Рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) – устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. Считывание информации характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков наносек до нескольких милисек.

Рассмотрим процесс считывания информации на примере компакт-диска. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Длина пита изменяет как амплитуду, так и длительность регистрируемого сигнала.

Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Перспективы развития

Развитие носителей записи информации идет в 3 основных направлениях:

а) увеличение объема полезной информации на конкретном носителе (особенно актуально для оптических дисков);

б) улучшение качества технического оборудования (время доступа к информации, скорость передачи данных);

в) постепенное повышение уровня сочетаемости различных форматов используемых носителей.

К перспективным видам носителей памяти относятся: Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc), Millipede.

Eye-Fi - разновидность SD флеш-карт памяти со встроенными внутри карты аппаратными элементами поддержки Wi-Fi-технологии.

Карты могут быть использованы в любом цифровом фотоаппарате. Карта вставляется в соответствующее гнездо фотоаппарата, получая питание от фотоаппарата и при этом расширяя его функционал. Фотоаппарат, оснащённый такой картой может передавать отснятые фотоснимки или видеоролики на компьютер, в мировую сеть интернет на заранее запрограммированные ресурсы, которые осуществляют фото или видео хостинг подобного рода контента. Администрирование, доступ к настройкам и управление работой таких карт осуществляется по Wi-Fi с PC или Mac совместимого компьютера через браузер. Карта работает только через заранее прописанные Wi-Fi сети, поддерживаются шифрование WEP и WPA2.

Технические характеристики:

Емкость карты: 2, 4 или 8 Гигабайта

Поддерживаемые стандарты Wi-Fi: 802.11b, 802.11g

Безопасность Wi-Fi: cтатический WEP 64/128, WPA-PSK, WPA2-PSK

Размеры карты: SD стандарт - 32 х 24 х 2.1 мм

Вес карты: 2.835 г

Голографический многоцелевой диск (Holographic Versatile Disc) - разрабатываемая перспективная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению сBlu-Ray и HD DVD. Она использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные. Предполагаемая информационная ёмкость этих дисков - до 3.9 терабайт (TB), что сравнимо с 6000 CD, 830 DVD или 160 однослойными дисками Blu-ray; скорость передачи данных - 1 Гбит/сек. Optware собирался выпустить 200GB диск в начале июня 2006 года и Maxell в сентябре 2006 с ёмкостью 300GB. 28 июня 2007 года HVD стандарт был утверждён и опубликован.

Структура голографического диска (HVD)

1. Зелёный лазер чтения/записи (532nm)

2. Красный позиционирующий/индексный лазер (650nm)

3. Голограмма (данные)

4. Поликарбонатный слой

5. Фотополимерный (рhotopolimeric) слой (слой содержащий данные)

6. Разделяющий слой (Distans layers)

7. Слой отражающий зелёный цвет (Dichroic layer)

8. Алюминиевый отражающий слой (отражающий красный свет)

9. Прозрачная основа

P. Углубления

Millipede – относительно новая технология запоминающих устройств, разрабатываемая компанией IBM. Для считывания и записи информации используется зонд сканирующего зондового микроскопа. Также вопросами Millipede memory (Милипидовой памяти) занимаются учёные из Университета науки и технологий в Поханге (Южная Корея). Они смогли первыми в мире создать материал, подходящий для создания миллипидовой памяти. Особенность миллипидовой памяти заключается в том, что информация сохраняется в огромном количестве наноямок, покрывающем поверхность рабочего материала. При этом подобная память является энергонезависимой, и данные сохраняются в ней сколь угодно долго. Для создания действующего прототипа миллипидовой памяти корейские электронщики разработали уникальный полимерный материал. Только с его помощью удалось создать стабильно функционирующее запоминающее устройство, которое уже практически готово к внедрению в производство.

Заключение

В ходе реферата были рассмотрены основные виды носителей информации, принципы кодирования и считывания информации, а также перспективы развития носителей информации.

Также были рассмотрены история носителей информации (перфоленты, перфокарты, магнитные ленты, сменные и постоянные магнитные диски, магнитные барабаны, пакеты сменных магнитных дисков); накопители на гибких магнитных дисках, накопители на жестких магнитных дисках, CD-диски, DVD-диски, портативные USB-накопители, USB Flash Drive. Были рассмотрены кодирование (текстовое, графическое, звуковое) и считывание информации (на примере считывание информации с CD-диска). Самыми перспективными на сегодняшний день считаются Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc) и Millipede.

Май 2009

Чем прочнее цифровая техника входит в жизнь офисов, тем активнее они начинают использовать самые разнообразные носители информации . Первыми на рынке товаров для офиса появились дискеты, затем к ним добавились CD- и DVD-диски и теперь уверенно входят в обиход флеш-накопители. Несомненно, в ряде случаев те или иные накопители информации оказываются куда более эффективным, а в некоторых случаях даже незаменимым инструментом работы с различными материалами, что и приводит к росту спроса на данный вид продукции в офисном сегменте и, соответственно, введению в ассортимент и постепенному расширению линейки носителей информации операторами рынка товаров для офиса. О ситуации в этом сегменте компьютерных аксессуаров, особенностях предложения, тенденциях спроса и перспективах развития читайте в нынешнем товарном обзоре.

Общая ситуация

«Носители информации» являются одной из наиболее динамично развивающихся товарных групп: не успели появиться первые дискеты, как производители вывели следующий вид продукции - CD- и DVD-диски, а затем и USB-накопители и карты памяти, внешние жесткие диски. То, что раньше в работе нередко воспринималось как «роскошь», сегодня становится нормой жизни и неизменным ее атрибутом, естественным, как ручка или бумага. Именно поэтому канцелярские компании с недавнего времени стали вводить в свой ассортимент и развивать линейку товаров «Носители информации», хотя справедливости ради надо отметить, что «похвастаться» хорошей подборкой этого вида продукции в ассортименте могут пока далеко не все игроки канцелярско-офисного рынка.

Тем не менее, нарастание интереса к этой группе товаров у операторов канцелярского рынка налицо, о чем свидетельствуют и эксперты компаний, специализирующихся на дистрибуции компьютерной техники и аксессуаров и осуществляющих поставки носителей информации в том числе и «канцелярщикам».

«В настоящий момент доля канцелярских компаний, предлагающих носители информации, невелика, - отмечает продакт-менеджер по флеш-продукции компании «АК Цент» Сергей Рощин . - Хотя в ближайшее время она может быть значительно расширена за счет того, что флеш-накопители начинают переходить из разряда компьютерных аксессуаров в разряд расходных материалов, жизненно необходимых для работы современного офиса».

«Среди наших клиентов немало канцелярских компаний и они занимают существенную долю по группе «Носители информации», - рассказывает менеджер отдела развития бизнеса компании «Мерлион» Ольга Шипулина . - В ближайшем будущем их доля скорее всего будет только расти, так как носители информации все больше переходят в сегмент канцелярии из сегмента технически сложных товаров, - продолжает она. - В первую очередь, это относится к флэш-памяти, а также к USB-жестким дискам большой емкости - от 160 Гб до 2 Тб. Это наиболее быстро развивающийся сегмент, который за последние полгода-год показал значительный рост».

Стремительное развитие группы «Флеш-накопители» как одного из сегментов «Носителей информации» и тенденцию к вытеснению ими других носителей информации отмечает и Сергей Рощин («АК Цент») , констатируя, что они все больше конкурируют с CD- и DVD-дисками, особенно в низком ценовом сегменте.

Поскольку для операторов канцелярского рынка носители информации являются относительно новой продукцией, нельзя говорить о его насыщенности этим видом товара. «Насыщенность рынка невелика и многие компании довольно узко представляют этот сегмент, - констатирует начальник отдела оргтехники ГК «САМСОН» Алексей Токарев . - Хотя в ассортименте нашей компании присутствует практически вся номенклатура носителей информации - и дискеты, и CD-R/RW-, DVD-R/RW-диски, и карты памяти, и USB-накопители, а в ближайшее время планируется и введение в ассортимент переносных жестких дисков». «Что касается флеш-накопителей, то рынок тоже далек от насыщения», - добавляет Сергей Рощин («АК Цент») .

Возможно, именно поэтому носители информации являются наиболее прибыльной группой в сегменте «Компьютерные аксессуары», о чем также свидетельствуют эксперты. «В сегменте «Компьютерные аксессуары» группа «Носители информации» является одной из самых прибыльных», - отмечает Алексей Токарев («САМСОН») . «Флеш-карты, USB-накопители и внешние HDD- и SSD- диски составляют более половины нашего ассортимента и однозначно лидируют по уровню прибыли», - констатирует Сергей Рощин («АК Цент») . «Прибыльность в этом сегменте традиционно хорошая, и в том числе поэтому товарная группа динамично развивается», - подтверждает Ольга Шипулина («Мерлион») .

Игроки & Особенности спроса

Диаграмма 1. Доли разных групп потребителей в общем потоке спроса на носители информации (по данным компании "АК Цент")

Состав и доли игроков в разных подгруппах носителей информации варьируются. Если говорить о подгруппе «Дискеты», то, по словам Алексея Токарева («САМСОН») , наиболее популярны изделия торговых марок Verbatim, Imation, Emtec/BASF, TDK, SONY. «При этом лидирует торговая марка Verbatim, на продукцию которой приходится примерно 25 % всех продаж», - добавляет он.

«Рынок записываемых оптических носителей (CD-/DVD-дисков) делится на два сегмента: диски no name и продукция известных компаний, таких как TDK или Verbatim. В первом сегменте имеет значение только цена, а во втором упор делается на имидж торговой марки», - продолжает он.

Если же говорить о группе «Флеш-накопители», то здесь, как утверждает Сергей Рощин («АК Цент») , лидируют торговые марки Transcend и Kingston, которые занимают примерно по 30 % рынка флеш-памяти. «Далее идут такие бренды, как Sony - 10 %, Apacer - 7 %, A-Data - 5 %, а также ряд других, доля которых находится в диапазоне до 5 %: OCZ, SanDisk, PQI и т.д.», - добавляет он.

Сергей Рощин: Припомните, когда вы сами последний раз покупали ручки или post-it-блоки себе домой? Зачем? Ведь их с логотипом компании выдают на работе. То же скоро будет и с USB-драйвами. Просто на них будет стоять не логотип производителя.

По мнению Ольги Шипулиной («Мерлион») , картина с распределением долей между игроками сегодня не так ясна. «В нынешней нестабильной ситуации нельзя что-то утверждать с уверенностью о долях или о сформировавшемся спросе и сегментах рынка, и группа «Носители информации» не исключение, - замечает она. - Сейчас становится все более востребованной продукция дешевых марок, так как помимо низкой цены они стали также предлагать сегодня неплохой дизайн и «подтянулись» в качестве продукции».

Помимо зарубежных игроков на российском рынке представляют свою продукцию и отечественные производители. Однако, как справедливо замечает Сергей Рощин («АК Цент») , говорить об их существенной доле не приходится. «В большинстве случаев это Private Labels отечественных дистрибьюторов и ритейлеров», - добавляет он.

Конкуренция между игроками довольно жесткая. «На рынке флеш-памяти это обусловлено достаточно большим числом дистрибьюторов и преобладанием на рынке ценовой конкуренции, - анализирует Сергей Рощин («АК Цент») . - В низком ценовом сегменте емкостей до 2 Гб конкуренция обострена настолько, что многие дистрибьюторы работают исключительно с самыми ходовыми позициями в среднем и верхнем ценовом диапазонах, - продолжает он. - Что касается нашей компании, то мы стараемся поддерживать максимальный ассортимент продукции по каждому вендору, что вкупе с привлекательной ценой позволяет нам удерживать лидирующие позиции на рынке в течение многих лет. Относительно no name продукции можно сказать, что ее основные потребители - это рекламные агентства и корпоративный сектор, занимающийся нанесением собственных логотипов на эти флеш-накопители. Сейчас флеш-накопители с логотипом компании становятся достаточно распространенным элементом корпоративного стиля, наравне с ручками и ежедневниками».


Схема 1. Классификация носителей информации

Достаточно сильная конкуренция существует и в сегменте CD- и DVD-дисков, причем также основная борьба происходит между брендовой и no name продукцией. Наиболее спокойной, пожалуй, остается в этом плане ситуация в сегменте дискет, которые ввиду своей низкой стоимости и ограниченного спроса не представляют особого интереса для производителей небрендовой продукции.

Анализируя распределение спроса на флеш-накопители, Сергей Рощин («АК Цент») отмечает, что по приблизительной оценке на Москву и область приходится до 60-70 % спроса, все остальное - другие регионы. «Однако закупающие товар в Москве более мелкие дистрибьюторские компании занимаются дальнейшим распространением товара в том числе и в регионах, - замечает он. - То же можно сказать и про федеральные розничные и сотовые сети. Поэтому примерно можно оценить доли потребления «флеша» в Москве, Московской области и в остальных регионах России как равные».

О росте спроса на носители информации в регионах свидетельствует и Ольга Шипулина («Мерлион») . «В регионах появился отложенный спрос, когда потребитель стал покупать высокотехнологичные товары и, соответственно, увеличился спрос на носители информации», - констатирует она.

Говоря об особенностях спроса на носители информации, Сергей Рощин («АК Цент») обращает внимание на то, что спрос на флеш-память обладает ярко выраженной сезонностью. «В весенне-летний период преобладают продажи флеш-карт, а в осенне-зимний - USB-накопителей, - поясняет он. - Это отчасти обусловлено спецификой использования этих устройств: летом, в период отпусков, необходимы карточки для фотоаппаратов и телефонов, а осенью школьники и студенты покупают USB-накопители для обмена данными».

При этом именно в сегменте флеш-накопителей как в наиболее динамично развивающемся и наиболее дорогостоящем можно говорить сегодня о самой высокой планке требований, предъявляемых к качеству продукции. Хотя, по словам Сергея Рощина («АК Цент») , и она не является основной. «Большинство флешек устаревают морально гораздо быстрее, чем физически выходят из строя, да и срок гарантии на некоторые из них распространяется на весь период эксплуатации, - поясняет он. - В целом же для флеш-карт показателем качества является скорость передачи данных, для USB-драйвов - дизайн и качество его исполнения: материал, сборка, иногда даже упаковка».

Дискеты

«В конце прошлого десятилетия эксперты компьютерного рынка единодушно уверяли: время 3,5-дюймовых дискет или, по-другому, флоппи-дисков уходит - еще год-два, и они будут полностью вытеснены с рынка, - рассказывает Алексей Токарев («САМСОН») . - Рынок дискет действительно сокращается, но куда медленнее, чем предсказывали».

Сегодня, по словам Алексея Токарева («САМСОН») , объем российского рынка дискет колеблется от 2 до 3 млн. носителей в месяц. «Эксперты называют несколько причин неослабевающей популярности дискет, - продолжает он. - Во-первых, это достаточно низкая стоимость по сравнению с альтернативными устройствами, такими как флеш-память и магнитно-оптические диски. Во-вторых, дискеты часто используются для хранения информации, с помощью которой можно восстановить работоспособность компьютера после сбоя. Но самой главной причиной «живучести» дискет является, пожалуй, дешевизна дисководов, продающихся не дороже 10 долларов», - заключает он.

Так или иначе но дискеты сегодня сохранили за собой несколько ниш, которые позволяют им пока занимать относительно стабильную долю рынка. Спрос на них удерживается благодаря:

Государственным органам, в которых парк вычислительной техники очень бюджетен, в связи с чем для обмена файлами используются 3,5" дискеты;

Отдельным вузам, особенно периферийным, в которых студенты прибегают к использованию дискет как к практически безальтернативному средству для передачи курсовой или иной работы;

Некоторым сферам (например банковской), где все еще используется софт, требующий ключевую дискету для доступа к программе или каким-либо данным;

Компьютерным «энтузиастам», которые иногда держат в компьютере дисковод, так как все операционные системы до Windows XP драйверы (на этапе установки) воспринимают только с дискеты, и загрузочный флеш-накопитель под Windows XP проще создать, предварительно сделав загрузочную дискету.

Диаграмма 2. Доля разных видов накопителей в ассортименте компаний

Благодаря перечисленным группам дискеты и дисководы для флоппи-дисков сегодня остаются вполне востребованным товаром.

В ассортименте компаний можно встретить дискеты черные или ассорти (зеленые, красные, желтые, синие, оранжевые и т.д.) в упаковке. Они могут продаваться как в картонных упаковках, так и в пластиковых боксах. Однако существенного влияния все эти «изыски» сегодня на спрос не оказывают. Самыми ходовыми остаются классические черные дискеты, упакованные в более экономичную картонную коробку.

Диски

Спрос на CD- и DVD-диски, значительно выше, чем на дискеты, хотя можно отметить, что с распространением более емких DVD-дисков спрос на диски CD «замер». «Доля CD-дисков в последние годы сокращается, и немудрено. Этих носителей уже недостаточно для больших объемов информации, например для видео, а цена «болванок» почти сравнялась с ценами на более емкие носители информации, - констатирует Алексей Токарев («САМСОН») . - Да и приводы, не поддерживающие работу DVD-дисков, становятся потихоньку достоянием истории, - продолжает он. - Однако в абсолютном исчислении поставки таких носителей все еще остаются очень высокими. Во многом это связано с тем, что большое количество бытовой аппаратуры, купленной ранее, других форматов не понимает. Иными словами, если нам нужна совместимость со старым бытовым плеером или магнитолой, то нужно покупать именно CD. Да и вообще, в плане обеспечения максимальной совместимости этот формат остается пока наиболее оптимальным: любой оптический привод будет читать CD-диск. Плюс к тому, ноутбуки с combo-приводом продаются до сих пор, так что их владельцам при желании что-либо записать на «оптику» выбора не остается», - заключает он.

И те и другие оптические носители информации имеют свои преимущества, и каждый постепенно занимает свою нишу на рынке. CD-диски более емки, чем дискеты и не так дороги, как DVD-диски. Поэтому они являются оптимальным вариантом для записи и массового распространения презентаций, обучающих программ, каталогов, рекламных материалов, приложений к печатным изданиям, а также для создания архивов и т.д., что и позволяет им пока оставаться лидерами продаж в линейке «дискеты - CD-диски - DVD-диски» (см. Диаграмму 4). Диски DVD применяются в тех областях, где приходится работать с документами большого объема (например в дизайнерских, конструкторских отделах).

Blu-Ray диск (BD-диск)
В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно. Уменьшение длины волны в тенологии Blu-Ray позволило сузить дорожку записи вдвое по сравнению с обычным DVD-диском и увеличить плотность записи данных. Иными словами, более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см диска Blu-Ray, чем на CD/DVD того же размера.

Если анализировать ассортимент CD- и DVD-дисков, предлагаемый сегодня на рынке товаров для офиса, можно отметить, что продукция представлена достаточно широко. Это, как правило, несколько торговых марок и продукция no name, охватывающие все ценовые сегменты и, соответственно, различный тип упаковки с различным количеством дисков в самой упаковке.

Наиболее широко представлен ассортимент одноразовых CD- и DVD-дисков (если сравнивать с линейкой дисков многоразовых): как по количеству штук в упаковке, так и по типу упаковки, по цветности, возможности печати на поверхности диска.

В ассортименте дисков CD-R и DVD-R (одноразовых) по количеству в упаковке наибольшее число позиций приходится чаще всего на упаковки по 10 дисков. Достаточно широко представлена и продукция в упаковках по 25, 50 и 100 дисков. При этом наиболее популярным типом упаковки все чаще становится cakebox как более дешевый, а при больших «партиях» в 50 и 100 дисков практически единственно возможный. Однако хранение в офисах архивных материалов в «кейкбоксах» достаточно неудобно, так как затрудняет поиск и извлечение нужного диска из общей массы нанизанных, как в детской пирамиде, одна на другую «болванок».

Некоторые компании предлагают диски в упаковке shrink, в которой диски расфасованы по количеству и заключены в обычную термоусадочную пленку - это, пожалуй, самый экономичный тип упаковки, однако в линейке продукции поставщиков встречается достаточно редко. Такие «болванки» обязательно потребуют дополнительных расходов на аксессуары для хранения - или пластиковые футляры, или карманы для дисков, или кейсы и специальные боксы.

Диски в пластиковых футлярах jewel («толстых») и slim («тонких») предлагаются обычно в картонных упаковках вместимостью до 10 штук. По словам Алексея Токарева («САМСОН») , футляры slim компактнее и дешевле, поэтому пользуются бОльшим спросом. В целом же преимущество дисков в футлярах еще и в том, что их можно без проблем продавать как упаковками, так и поштучно - футляр защитит «болванку» от механических повреждений при транспортировке и избавит клиента от необходимости решать проблему «во что бы завернуть и положить».

Определенный интерес среди одноразовых дисков представляют носители с возможностью печати на поверхности. Как отмечает Алексей Токарев («САМСОН») , этот вид оптических носителей пользуется спросом в корпоративном сегменте.

CD-RW и DVD-RW- (многоразовые) диски предлагаются обычно в гораздо меньшем количестве в упаковке и чаще - поштучно и в футлярах jewel, так как такой тип бокса максимально защищает оптические носители информации от повреждений.

Именно «многоразовость» дисков определила заметно меньший спрос на них. Во-первых, они могут быть использованы несколько раз, и, соответственно, потребность докупать их возникает гораздо реже, во-вторых, они, конечно же, дороже, чем одноразовые диски, так что покупаются именно при целенаправленной необходимости записывать на «болванку» несколько раз. А если учесть, что на рынке достаточно широко и по приемлемым ценам представлены более «продвинутые» носители информации, в разговорной речи именуемые «флешками», которые позволяют записывать гораздо большие объемы информации, значительно большее количество раз, при этом сами устройства, бесспорно, компактнее дисков, да и информация на них более защищена от механических воздействий. Все это, в конечном счете, приводит к тому, что потребитель все чаще останавливает свой выбор именно на «флешках».

По этой же причине малое распространение получили двухсторонние диски. «Спрос на них довольно ограничен ввиду того, что они дороги и на данный момент существуют другие носители, которые могут обеспечить больший объем хранения информации», - отмечает Алексей Токарев («САМСОН») .

Еще одна существующая разновидность дисков - Blu-Ray или BD (от англ. blue ray - «голубой луч») - формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой четкости с повышенной плотностью. Этот тип носителей информации также присутствует в ассортименте некоторых компаний, однако пока большого распространения не получил по ряду причин. «Сложно сказать насчет перспектив дисков BD, - комментирует Ольга Шипулина («Мерлион») , - думаю, они востребованы и будут оставаться востребованы только в сегменте лицензионных фильмов, игр и прочего контента, продающегося только на дисках».

По словам же Алексея Токарева («САМСОН») , приводы для BD-дисков становятся более массовыми, сами диски дешевеют, поэтому в ближайшие пару лет «продвижение формата продолжится».

Флеш-накопители, карты памяти, переносные жесткие диски

Этот сегмент носителей информации, по мнению Сергея Рощина («АК Цент») , отличает постоянный понижающий ценовой тренд и постоянный рост объема памяти самих цифровых носителей. «Еще полгода назад основные продажи приходились на носители емкостью 1 Гб и 2 Гб, сейчас самый ходовой объем уже 2 Гб и 4 Гб, а 1 Гб практически исчез из ассортимента, - комментирует он. - Вполне вероятно, что к концу года уже сложно будет отыскать USB-накопитель емкостью 2 Гб, а 4 Гб и 8 Гб будут лидерами продаж».

Алексей Токарев («САМСОН») , характеризуя специфику сегмента, добавляет, что в отличие от «оптики», где происходит простое перераспределение долей рынка, сегмент флеш-накопителей растет сам по себе. «Распространение цифровых фотокамер, видеокамер на флеш-картах и других цифровых устройств позволяет прогнозировать значительный рост продаж флеш-карт», - добавляет он.

По словам Ольги Шипулиной («Мерлион») , основное преимущество флеш-памяти перед жесткими дисками и носителями CD-ROM состоит в том, что она потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. «Кроме того, флеш-память компактнее большинства других, механических носителей, надежнее и долговечнее, - отмечает она. - Записанная на нее информация может храниться от 20 до 100 лет и способна выдерживать значительные механические нагрузки, в 5-10 раз превышающие длительно допустимые для обычных жестких дисков».

Типы флеш-накопителей

USB Flash Drive или USB-накопитель на основе флеш-памяти (флеш-драйв, USB-драйв или «флешка») - носитель информации, использующий флеш-память для хранения данных и подключаемый к компьютеру или иному считывающему устройству через стандартный разъем USB. Именно последнее отличает этот тип носителей информации от карт памяти.

Multimedia Card (MMC) - портативная карта памяти, используемая в цифровых фотоаппаратах, мобильных телефонах и т. д. Размер 24х32х1,5 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. Как правило, карты MMC поддерживаются устройствами со слотом SD. Три дополнительные модификации ММС карт: RS-MMC, MMCmobile и MMCmicro, которые для обеспечения совместимости со стандартным слотом MMC требуют адаптера.

RS-MMC (Reduced Size MultiMedia Card): вдвое короче стандартной карты MMC (reduced size = «уменьшенный размер»): 18х24х1,4 мм. Все остальные характеристики не отличаются от характеристик «обычной» MMC карты.

DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (dual voltage = «двойной вольтаж»:1,8 и 3,3 В) отличаются пониженным энергопотреблением и позволяют работать устройству немного дольше. Размеры совпадают с размерами RS-MMC.

MMCmicro : миниатюрная карта памяти для мобильных устройств с еще меньшими, чем у RS-MMC, размерами: 12х14х1,1 мм.

SD Card (Secure Digital Card) - поддерживается фирмами SanDisk, Panasonic и Toshiba. Является дальнейшим развитием стандарта MMC. По размерам и характеристикам очень похожи на MMC, только чуть толще (24х32х2,1 мм). Основное отличие - технология защиты авторских прав (secure digital = «защищенный цифровой»), которая позволяет защитить доступ к карте паролем. В отличие от карт стандарта ММС карты SD также снабжены механическим переключателем защиты от записи информации, удаления файлов и форматирования карты. Такой вид защиты возложен на устройство, работающее с картой, поэтому может быть не реализован. В большинстве случаев SD можно заменить MMC-картой. Замена в обратном направлении обычно невозможна из-за большей толщины карт SD. Существует 2 модификации SD карт:

SDTF (Trans-Flash) и SDHC (High Capacity = «высокой емкости») - карты SDTF и SDHC и устройства их чтения различаются ограничением на максимальную емкость носителя - до 2 ГБ для TF и до 32 ГБ для HC. Устройства чтения SDHC обратно совместимы с SDTF и без труда прочитают карту SDTF, а вот в устройстве SDTF увидится только 2 ГБ от емкости SDHC, если та имеет бОльшую емкость, или не будет читаться вовсе. Оба субформата могут быть трех размеров: стандартного SD (24х32х2,1 мм), miniSD (20х21,5х1,4 мм) и microSD (11х15х1 мм). Для обеспечения совместимости со стандартным слотом SDmini и micro требуют адаптера.

Memory Stick (MS) - носитель информации на основе технологии флеш-памяти от корпорации Sony. Карты памяти Memory Stick используются в видеокамерах, цифровых фотоаппаратах, персональных компьютерах, принтерах, игровых приставках PSP, сотовых телефонах и других электронных устройствах преимущественно самой компании Sony. Стандартные размеры: 21,5х50х2,8 мм.

MS Duo/MS Pro Duo - имеют меньшие размеры (20х31х1,6 мм) и большую скоростью передачи информации (до 20 Мб/с).

MSmicro - имеет еще меньшие размеры (12,5х15х1,2 мм).

CompactFlash (CF) - формат флеш-памяти, который появился одним из первых. Разработан компанией SanDisk. Используется в карманных компьютерах, цифровых видео- и фотокамерах, принтерах и т.д. Размеры: 43х36х3,3 мм. Одно из важнейших достоинств CF - совместимость со стандартом PCMCIA-ATA - наиболее распространенным для малогабаритных устройств.

Smart Media (SM) - формат разработан компанией Toshiba. В отличие от CF, карты SM не имеют встроенного контроллера, что несколько ухудшает совместимость - старые устройства не всегда понимают карты большой емкости. Размеры: 37х45х0,76 мм. Карты памяти данного формата сняты с производства в настоящее время.

eXtreme Digital (хD) , новое название - xD-Picture Card - формат рассчитан на использование в цифровых фотоаппаратах Olympus и Fuji. Другие бренды, выпускающие карты xD: Kodak, SanDisk и Lexar. Разработан в качестве замены формату Smart Media. По сравнению с SM формат хD более универсален, компактен (размер 20х25х1,7 мм), имеет более высокую скорость передачи данных, уменьшенное энергопотребление и бОльшую емкость. В отличие от карт SD/MMC карты xD не оснащены микросхемой контроллера, в связи с чем имеют относительно небольшой по сравнению с SD/MMC картами размер и невысокие скоростные показатели. Стоимость xD карт в среднем вдвое больше стоимости SD-карт одного и того же объема при том, что особых преимуществ перед SD карты XD не имеют.

Существует несколько типов флеш-накопителей. Все их условно можно разделить на 3 группы: флеш-драйвы (или попросту «флешки»), карты памяти и SSD, которые часто рассматривают вместе с магнитными внешними НDD дисками.

Как отмечает Ольга Шипулина («Мерлион») , для офиса наиболее популярными являются флеш-драйвы и внешние HDD и SSD диски. «Карты менее популярны, так как используются активнее в мультимедийных устройствах: телефонах, смартфонах, КПК, фото- и видеотехнике», - добавляет она.

SSD-диск
(от англ. SSD, Solid State Drive, Solid State Disk) - твердотельный накопитель, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей (в отличие от HDD). Различают твердотельные накопители, основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти. «Начинка» SSD физически не имеет ничего общего с традиционными винчестерами (HDD) и представляет собой массив флэш-памяти с винчестерным интерфейсом и доступом к ПК (по традиционным интерфейсам SATA или PATA). От HDD внешне отличается лишь более компактными габаритами. SSD свойственны все преимущества и недостатки флэш-памяти.

«Среди USB-накопителей лидируют флеш-драйвы - 80 %, - констатирует Сергей Рощин («АК Цент») . - Своих покупателей также находят и портативные внешние жесткие диски (HDD), которые предлагают бОльшие емкости (до 1000 Гб) при удобстве обычных USB-драйвов - 15 %. Массовое распространение новейших твердотельных накопителей SSD пока ограничено относительно высокой по сравнению с HDD ценой, их доля на рынке USB-накопителей составляет пока всего 5 %, но данный тип носителей имеет очень большой потенциал для развития, так как они обладают USB-интерфейсом, объемом HDD-диска и флеш-памятью, в отличие от HDD-дисков, имеющих механические элементы».

Диаграмма 3. Соотношение USB-накопителей и карт памяти в ассортименте компаний

«Среди флеш-карт безоговорочным лидером является micro CD - около 50 % всех продаж карт, - так как они используются практически в каждом «мобильнике», - продолжает Сергей Рощин («АК Цент») . - Далее наиболее значимыми являются карты памяти Secure Digital, используемые в профессиональной фототехнике и коммуникаторах, - 30 %, MemoryStick (MS Pro Duo и MS Micro M2) из-за лоббирования их компанией SONY - 10 %, и Compact Flash - 7 %. Остальные стандарты сейчас практически «вымерли», - констатирует он. - Тем не менее, в качестве офисного варианта окажутся более интересными MS Pro Duo и SD карты, которые могут быть использованы для расширения памяти ноутбуков и нетбуков и, соответственно, их возможностей, так как емкость флеш-носителей иногда сравнима с емкостью встроенного диска».

В оценке параметров, влияющих на выбор клиентами тех или иных устройств эксперты разошлись во мнениях (см. Таблицу 1 ). Более того, сама оценка параметров также вызвала затруднения, поскольку в разных ситуациях, по отношению к разным типам флеш-накопителей и в разных сегментах рынка их значимость варьируется. Так, по словам Сергея Рощина («АК Цент») такой параметр, как бренд, оказывается важен, в основном, для корпоративных заказчиков, предъявляющих повышенные требования к надежности, например для банков или для тендерных поставок, где четко прописана конкретная торговая марка. «А в рознице продается обычно тот бренд, который есть на прилавке и который рекламирует умелый консультант», - добавляет он.

Кроме того, как утверждает Сергей Рощин («АК Цент») , трудно определить значимость такого параметра как «емкость» накопителя. «Как правило, конечный пользователь покупает флешку максимально возможной емкости, укладывающуюся в сумму, которую он может позволить потратить на нее независимо от того, актуален ли этот объем сейчас или нет», - поясняет он.

Интересно отметить, что в отличие от спроса на многие другие товары для офиса спрос на такие носители информации, как флеш-драйвы, нередко определяет упаковка. «Упаковка/блистер - яркая, стилизованная - иногда гораздо важнее бренда и стоит наравне с дизайном самой флешки, - подчеркивает Сергей Рощин («АК Цент») . - Относительно же дизайна изделий можно сказать, что в офисном сегменте больше пользуются спросом накопители в строгом исполнении и в классических цветах и материалах - простой пластиковый прямоугольник черного или корпоративного цвета. Однако в качестве представительских функций часто используются «флешки» оригинального дизайна, например накопители, стилизованные под продукцию компании, или «флешки» с дорогой, эксклюзивной отделкой корпуса - допустим, из натуральной кожи или со стразами от Сваровски». О важности материалов, из которых изготовлен корпус изделия свидетельствует и Ольга Шипулина , утверждая, что они влияют на выбор того или иного накопителя так же, как и бренд и страна-производитель.

Диаграмма 4. Соотношение объемов продаж CD-/DVD-дисков, дискет в 2008 г. в ассортименте ГК "САМСОН"

Эксперты также обращают внимание на то, что флешки небольших размеров не такие удобные в эксплуатации, и хотя они и присутствуют в ассортименте компаний, но пользуются ограниченным спросом. «Очень малый размер флешки является, скорее, рекламным ходом, чем востребованной необходимостью, и имеет ряд недостатков: более низкую прочность корпуса, незащищенность USB-разъема, и, банально, такую флешку гораздо легче потерять и труднее найти в кармане или сумке», - поясняет Сергей Рощин («АК Цент») .

Такой параметр, как скорость обмена информацией (чтения/записи), по словам Сергея Рощина («АК Цент») , не так заметно влияет на выбор USB-драйва и наибольшее значение имеет в основном при покупке карт формата Compact Flash, используемых в профессиональной фототехнике. «В остальных случаях более важным аргументом является цена, - добавляет он. - При этом повышение цен на однотипную продукцию обычно приводит к смещению спроса на более дешевые аналоги, если это взаимоконкурирующие бренды, такие как Transcend и Kingston. Дизайн и имидж бренда здесь играют менее значимую роль».

При работе с картами памяти следует помнить несколько основных правил:

  • электростатический разряд может повредить электронные компоненты, поэтому прежде чем прикасаться к карте памяти, нужно убедиться, что на вас нет статического электричества, прикоснувшись к заземленному металлическому объекту;
  • следует избегать касания позолоченных контактов карты памяти;
  • необходимо оберегать карту памяти от источников тепла, прямых солнечных лучей, и влажности;
  • не стоит изгибать и бросать карту памяти;
  • никогда не следует отключать карту памяти во время передачи информации во избежание потери данных или повреждения самой карты;
  • перед использованием лучше убедиться в совместимости карты и устройства.

Относительно емкости «флешек», как уже было отмечено ранее, наибольшей популярностью на данный момент пользуются накопители вместимостью 2 Гб и 4 Гб, и самыми перспективными в настоящее время считаются модели емкостью 8 Гб. Хотя, как утверждает Сергей Рощин («АК Цент») , наличие флешек большей емкости в ассортименте тоже необходимо для полного ассортимента и постепенного «привыкания» к ним пользователя.

Диаграмма 5. Доля USB-накопителей разной емкости в ассортименте компаний

Заключение

Все эксперты признают, что диски, так же как и дискеты, в скором времени если не отойдут в прошлое, то будут значительно потеснены флеш-накопителями. «Динамика спроса будет смещаться в направлении USB-флеш и недорогих карт памяти большого объема, а также недорогих переносных USB HDD объемом до 500 Гб», - прогнозирует Ольга Шипулина («Мерлион»). И многие факторы, по ее мнению, будут способствовать этому процессу: и заполненность рынка всевозможными устройствами, позволяющими использовать карты памяти, и вытеснение дисков «флешками» и SSD/HDD небольшого объема, и бОльшая универсальность и удобство в использовании этих устройств для всех категорий потребителей, и большая защищенность записанной информации от механических воздействий.

Такого же мнения придерживается и Сергей Рощин («АК Цент»), отмечая, что сегмент флеш-носителей информации только начинает формироваться. «По мере роста предлагаемых объемов памяти носителей при снижении стоимости USB-флешки могут значительно потеснить компакт-диски как инструмент хранения и передачи информации за пределы компании (презентации, реклама и др.), - комментирует он. - Без сомнений, этот «сувенир» будет использоваться неоднократно, в отличие от диска, а это серьезный аргумент в пользу флеш-драйвов. Тем более многие современные ноутбуки начинают избавляться от встроенных DVD-приводов. Да и с процессом записи на USB-флешку разбираются даже «офисные блондинки», чего не скажешь про запись CD- или DVD-диска».

Особые перспективы имеет такая группа накопителей, как флеш-драйвы под нанесение информации на корпус. «Довольно скоро в большинстве компаний флешки с логотипом компании и небольшой презентацией будут иметься у каждого сотрудника, так же как ручка и визитки, - прогнозирует Сергей Рощин («АК Цент») . - А продажи их в корпоративный сектор, возможно, будут сравнимы с розничными».

Благодарим компании «АК Цент», «Мерлион», «САМСОН» за помощь в подготовке товарного обзора.

(электромагнитное излучение) и т. д. и т. п.

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы - в обложку, микросхему памяти - в пластик (смарт-карта), магнитную ленту - в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

  • записи
  • хранения
  • чтения
  • передачи (распространения)
  • создания произведений компьютерного искусства

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

  • бумага (перфолента, перфокарта, листы);
  • пластик (штрих-код, оптические диски);
  • магнитные материалы (магнитные ленты и диски);

Также ранее имели распространение: обожжённая глина , камень , кость , древесина , пергамент , берёста , папирус , воск , ткань и др.

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

  • термическое (выжигание);

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой ) электрическим способом: CD-ROM , DVD -ROM, полупроводниковые (флеш-память и т. п.), дискеты .

Имеют значительное преимущество перед бумажными (листы, газеты , журналы) по объёму и удельной стоимости. Для хранения и предоставления оперативной (не долговременного хранения) информации - имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование , сортировка). Недостаток - малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от .

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI-XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу » (quipu в переводе с языка индейцев кечуа - узел) . Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.
Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam (сокращённое от wampumpeag) - белые бусы . Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia - хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время

Современность

Сейчас люди используют компьютеры для обработки и хранения информации.

См. также

  • Носитель имени
  • Носитель фамилии
  • Нуклеиновые кислоты (ДНК, РНК)

Ссылки

Примечания